Sampling Methods			
Simple Random Sample (SRS) \square	Every sample of certain size has the same chance of being selected (as every - other sample of the same size) e.g. 150 cars in a parking lot. Want to pick 3 of them - If using a number linant blocks of 3 Split the number line up into blocks of 3 and select 3 cars 456124321150240984312102364219814		
Stratified	Split population into smaller groups called strata (subgroups) based on common characteristics/shared attributes. e.g. A company has 320 drivers, 80 office workers and 40 mechanics. We want to select a committee of 11 to represent all the employees. number for each category $=\frac{\text { category total }}{\text { complete total }} \times$ sample size required Drivers $=\frac{320}{440} \times 11=8$, office $=\frac{80}{40} \times 11=2$, Mech $=\frac{40}{440} \times 11=1$ Label: Drivers 001-320, Office 321-400, Mechanics 401-440 Drivers: Randint $(1,320,8)$ will select 8 drivers Mechanics: Randint ($1,320,1$) will select 1 mect 2 office workers Mechanics: Randint $(1,320,1)$ will select 1 mechanic		
Systematic	Choose subject (element/value people from a business survey of 1200 people abel the people 0001 to 1200 ${ }^{15}=80$ i.e. we'll take every $80^{\text {th }}$ value - If using number line: 12436289461234560124 pplit this up into blocks of 4: 12436289461234560124 24 is our starting point $124+80=204,204+80=284,284+80=364$ etc $124,204,284,364,444,524,604,684,764,844,924,1004,1084,1164,044$ If using a calculator: Randint $(1,1200,1)$ gives 24 so start at 24 $24,104,184,264,34$ $24,104,184,264,344,424,504,584,664,744,824,904,984,1064,1144$		
	Split population into smaller groups called clusters and sample EVERYONE from randomly chosen subgroups. Normally we split up based on area/geographical randomness is applied when selecting within each subgroup whereas with cluster sampling the randomness is applied when selecting between each subgroup. When we select the subgroup, we choose EVERY number inside. in the sample unlike with stratified.		
Confidence Intervals (cl)			
Terminology and Form $\begin{aligned} & \hat{\mathrm{p}}=\frac{x}{n}=\frac{\text { subset }}{\text { sample }} \\ & \bar{x}=\text { sample } \\ & \text { mean } \end{aligned}$	$p, \mu=$ population proportion/mean (parameters) $\widehat{\mathrm{p}}, \bar{x}=$ sample proportion/mean (statistics/point estimates) $\mathrm{Cl}=\left\{\begin{array}{c}\quad \text { statistic } \pm \text { margin of error } \\ \text { statistic } \pm \text { (critical value) (standard error) }\end{array}\right.$ Note: The standard error is just the S.D. of the sampling distribution $=\text { (statistic }- \text { margin of error, statistic }+ \text { margin of error })$ $=(\text { lower limit, upper limit })=(a, b)$		
Statistic/	$=\left\{\begin{array}{l} \frac{x}{n} \text { if given subset } x \text { of the sample size } n \\ \frac{a+b}{2} \text { if given confidence interval }(a, b) \end{array}\right.$		
Margin Of Error (MOE) This is the part of the formula after the \pm in the confidence interval	To solve for n: Use either $Z_{c} \sqrt{\frac{\rho_{0}}{n}}$ or $T_{c} \frac{s}{\sqrt{n}} / Z_{c} \frac{s}{\sqrt{n}}$ If don't know \hat{p} then use $\hat{p}(1-\hat{p})=0.25$ unless told otherwise Interpretation: If we repeated this procedure multiple times then statistic would be within ...(MOE) of the true value ... (\%) of the time		
	Proportion: $\sqrt{\frac{\sqrt{\frac{1 a x}{n}}}{} \text {, Mean: } \frac{s}{\sqrt{n}}}$		
Formulae All these formulae have STATISTIC/ SAMPLE values as their values, not population values Ask yourself first: Is proportion or mean and then is it 1 or 2 samples known OR $n \geq$ 30 Use Tif σ \qquad $n<30$ AP Stats \qquad \qquad \qquad We pool if T Test and $\sigma_{1} \approx \sigma_{2}$, but you will also notice that the normally doesn't pool size of σ	- 1 prop: $\hat{\mathrm{p}} \pm \sqrt{\sqrt{\frac{\hat{\rho}(\hat{q})}{n}}}$ where $\hat{p}=\frac{x}{n}, \hat{\mathrm{q}}=1-\hat{\mathrm{p}}$ Tests, 1 Prop Z interval - 2 prop: $\widehat{p_{1}}-\widehat{p_{2}} \pm z_{\sqrt{ } \sqrt{\frac{p_{1} \widehat{1}}{n_{1}}}+\frac{\sqrt{2} q_{2}}{n_{2}}}^{n}$ where $\widehat{p_{1}}=\frac{x_{1}}{n_{1}}, \widehat{p_{2}}=\frac{x_{2}}{n_{2}}$ Tests, 2 Prop Z interval - 1 mean: $\bar{X} \pm Z_{c} \frac{\sigma}{\sqrt{n}}$ OR $\bar{X} \pm T_{c} \frac{s}{\sqrt{n}}$ (σ unknown/ small sample) Tests, Z OR T Interval z_{c} : Invnorm with area $\frac{1-\psi_{6}}{2}, \mu=0, \sigma=1$ $\mathrm{df}=n-1$ - 2 means: $\overline{X_{1}}-\overline{X_{2}} \pm Z_{c} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}} / \overline{X_{1}}-\overline{X_{2}} \pm T s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$ where $s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}{ }^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{n_{1}+n_{2}-2}}$ (pooled formula) We pool when $\sigma_{1} \approx \sigma_{2}: S_{1}<2 S_{2}$ or $S_{2}<2 S_{1}$ If don't pool use formula: $\overline{X_{1}}-\overline{X_{2}} \pm T_{c} \sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}$ \qquad $T_{c}:$ InvT with area $\left.\frac{1-1 \%}{2}, \mathrm{df}=n_{1}+n_{2}-2\right)$ (no pool) $\mathrm{df}=\min \left(n_{1}-1, n_{2}-1\right)$ (no pool) Tests, 2 Samp Z or T interval - 2 means paired: $\bar{d} \pm T_{c}: \frac{s_{d}}{\sqrt{n}}$ Tests, Z OR T Interval. We usually use T $T_{c}:$ InvT with area $\frac{1-\%}{2}, \mathrm{df}=n-1$ - Slope of regression line (2 possible formulae) - slope $\pm T_{c}\left(s_{b}\right)$ where s_{b} is standard error (SE) - slope $\pm T_{c} \sqrt{\frac{\left(1-r^{2}\right) s y^{2}}{(n-2) s_{x}}}$ where s_{x}, s_{y} are the S.D.'s $T_{c}: \operatorname{InvT}\left(\frac{1-\%}{2}, d f\right), d f=n-2$ Tests, LinRegTint (can only use if have raw data)		
Assumptio	- Random: SRS - Independent: $N \geq 10 \mathrm{n}$ or $n \leq 10 \mathrm{n}$ (pop size is 10 times sample size or sample size is 10 percent of pop size)		
Interpretation of 2 sample CI: (,+ -) cannot say whether a diff $(-,-): 2^{\text {nd }}>1^{\text {st }}$ $(+,+): 1^{\text {st }}>2^{\text {nd }}$	ONE INTERVAL I C context/Ving BEFWEEN values: We are...\% confident LEVEL/Capture Rate/ALL intervals: If we repeated this procedure many times, about ...\% of the confidence intervals that we compute would contain the true pop value		
	- Smaller \% \Rightarrow maller CI (since smaller critical value) - Larger SD $=$ larger Cl (larger MOE)		
Hints for conceptual understanding	- If see probability not true unless says 0% or 100% CI does not talk about sample, it talks about population We use the Cl for sample to talk about Cl for population, but we use sample values in the actacicondence inteval formulae		

Linear Regresion			Distributions
Variables	$y=$ response/dependent y is the variable that you're testing to see whether it gets affected by x (y on x or y versus x)	Binomial Distribution Binompdf (=), Binomcdf (\leq) Normal Distribution Normad (iven x, want prob)Invorm (given prob, want $x, \mu \sigma)$	
Line of best fit aka least squares regression line (LSRL) Slope interpretation: for every 1 increase in unit of x, y increases/decreases by b (increases is + slope and decreases if - slope) y intercept interpretation: when $x=0$ then $y=$ a i.e. the starting value To plot line of best fit on TI 84 : Enter data and go Linreg Store RegEq : y vars, function Y_{1},calculate Stat plot, select plot 1, x list: L_{1}, y list L_{2} Press zoom, (9:zoomstat if can't see graph		Geometric Distribution (how long until 1st success) Geopdf (=) Geocdf (\leq)	
		Expectation Algebra	$E(a X \pm b)=a E(X) \pm b, \operatorname{VAR}(a X \pm b)=a^{2} \operatorname{Var}(X)$ $E(X Y)=E(X) E(Y), \operatorname{Var}(a X \pm b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$
		Discrete	
		Variance Discrete	
		Normal Approximation To Binomial (don't forget continuity correction before finding the prob)	$\begin{aligned} & n \text { large, pclose to } \frac{1}{2} \text { OR } n \hat{p} \geq 10, n(1-\hat{p}) \geq 10 \\ & x \in \beta(n, p)=x \sim N n, n p(1-p) \\ & \text { Mean is } n p \text { and s.d. is } \sqrt{n p(1-p)} \end{aligned}$
		Sampling Distributions	
		Distribution Condition: $n \hat{p} \geq 10, n(1-\hat{p}) \geq 10$ \qquad	$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$. Mean is p and s.d. is $\sqrt{\frac{p(1-p)}{n}}$ Use Population value p, not sample value \hat{p} which is $\frac{n}{\frac{s}{x}}$ (we only use pe for the conditions, interals and test statisitic)
Making Predictions	we can plug x values into the line of best fit and solve for y and vice versa		
		is Testing - Test Statistics	
Interpolation	plugging values into line of best fit that ARE within the data range (safe/accurate)	Assumptions Hypothesis Templates Use population values and ask yourself - whether 1 or 2 sample - whether Z or T	See confidence interal sectio
Extrapolation	plugging values into line of best fit that aren't within the data range (not safe/not accurate)		```1 sample: \(H_{0}: p=\cdots\) or \(\mu>\ldots\) \(H_{1}: p>\cdots\) or \(\mu>\) \(p<\cdots\) or \(\mu<\cdots\)```
Correlation coefficient (r)	Way 1: calculator (if have raw data) Stat, Calc LineReg(ax+b) if r is not appearing go to:Catalog, Diagnostic on		
Note: s_{x} and $s_{y}=$ standard deviations			2 sample: $H_{0}: p_{1}-p_{2}=0$ i.e. $p_{1}=p_{2}$ or $\mu_{1}-\mu_{2}=0$ i.e. $\mu_{1}=\mu_{2}$ $H_{1}: p_{1}-p_{2}<0$ i.e. $p_{1}<p_{2}$ or $\mu_{1}-\mu_{2}<0$ i.e $\mu_{1}<\mu_{2}$ $p_{1}-p_{2}>0$ i.e. $p_{1}>p_{2}$ or $\mu_{1}-\mu_{2}>0$ i.e $\mu_{1}>\mu_{2}$
	Way 2: easier formula		
$0=$ no correlation 1=perfect positive correlation $-1=$ perfect negative correlation			
(${ }^{0.00-0.19} \begin{aligned} & \text { verr we } \\ & 0.20-39\end{aligned}$			
			$\begin{aligned} & H_{1}: \mu_{d}=0 \\ & H_{1} / H_{a}: \mu_{d}>0 \\ & \quad \mu_{d}<0 \\ & \mu_{d} \neq 0 \\ & \text { Slope of regression line: } \\ & H_{0}: \beta=0 \\ & H_{1}: \beta \neq 0 \\ & \beta<0 \\ & \beta>0 \\ & \hline \end{aligned}$
	(Lx) ${ }^{2}{ }^{2}$		
	$\frac{\left.n^{n}\right)^{2}}{n}=\Sigma y^{2}$		
	$s_{x y}=\Sigma x y-\frac{\Sigma^{x} x\left(\frac{C \nu}{n}\right)}{n}=\sum x$		
Determination of variation/proportion of variation (r^{2}) This tells us the percent of variation in y that is due to x	Way 1: Square r value found above Way 2: use a formula (never use this) $r^{2}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}$ SSE $=\sum\left(y_{\mathrm{i}}-\hat{\mathrm{y}}\right)^{2}=\sum(\text { residuals })^{2}$ SST=sum of squares for total (sum of squared deviations from the mean) $=\sum\left(y_{i}-\bar{y}\right)^{2}$	Test Statistic (TS) AP Stats: σ unknown always, so can always use T for mean tests. We pool if T Test and $\sigma_{1} \approx \sigma_{2}$, but you will also notice that the mark scheme normally doesn't pool regardless of size of σ	
Residual To draw residual plot on TI 84: Stat plot, select plot 1, x list: L_{1}, Y List: Resid (2 ${ }^{\text {nd }}$, stat, Resid) Make sure you have already stored the regression equation in line of best fit section	actual data value - predicted value from line This is the vertical distance from the points to the line. The less the gap between points and line, the lower the residual value Points lie above line means positive residual Points lie below line means negative residual The mean of the residuals is always zero		
		Either use TS or P value to decide whether to reject: TS Method: <: TS< CV reject >: TS>CV reject $\neq:$ TS $<$ CV or TS>CV reject P value Method: If P value $<\alpha$ reject H_{0}	$\text { where } \mu_{1}-\mu_{2}=0 \text { and } s_{p}=\sqrt{\frac{s_{1}+}{n_{1}}+\frac{s_{2}}{n_{2}}}=\frac{s_{p} \frac{1}{n_{1}+\frac{1}{n_{2}}}}{\frac{\left.\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}\right)^{2}}{n_{1}+n_{2}-2}}$
			$\mathrm{df}=n_{1}+n_{2}-2$ (if pool)/ $\min \left(n_{1}-1, n_{2}-1\right)$ (if no pool) 2 means paired TS: $Z / T=\frac{\overline{x_{d}}-\mu_{d}}{\frac{s_{d}}{\sqrt{n}}} d f=n-1$ Slope of regression line TS: $\mathrm{T}=\frac{\text { slope }}{s_{b}}=\frac{b-\beta}{s_{b}}=\frac{b}{s_{b}}$ where $\beta=0, \mathrm{df}=\mathrm{n}-2$
Computer Printout Analysis (you are asked to locate and interpret the values in red on the table to the right)			
		Conclusion	$\begin{gathered} s_{b}, s_{b} s_{b} \\ \text { where } \beta=0, \mathrm{df}=\mathrm{n}-2 \end{gathered}$ There is sufficient/insufficient evidence at the...\% level to reject H_{0} \& we can conclude...
		P value To calculate: Find TS First <: P(Z<TS) $>: ~ P(Z>T S)$ キ: $2 \mathrm{P}(\mathrm{Z}>\mathrm{TS})$ or $2 \mathrm{P}(\mathrm{Z}<\mathrm{TS})$ Find prob's using normedf with μ and $\frac{\sigma}{\sqrt{n}}$ or Tcdf with df (see test statistics section above for df for Tcdf)	If p values is than α reject H_{0} i.e $P<\alpha$ Interpretation: Assume H_{0} is true, then prob of being in the correct tail is the p value in lower tail if < test, in upper tail if $>$ test and in double either tail if \neq test) the p value Larger sample size \Rightarrow smaller p value
Standard Error of Slope Parameter (SE)	Standard deviation of the estimated slope for predicting y by using an amount if x		
	Measures the typical amount of variability in the vertical from the actual data value (observed y variable) to the regression line i.e measure of variation in y variable for a given amount of x variable		
Good Ma			
			If x^{2} calc $=\Sigma \frac{(O-E)^{2}}{E}$. Reject: x^{2} calc $>x^{2}$ critical Hypothesis: $H:$: are independentin the ratio/. distributed ${ }^{4}=n=2$ then
Linear Regression - Transformations			Definitions: Type 1: H_{0} true, but we say it is false i.e. reject it
Power	$\begin{gathered} y=a x^{b} \text { where } x \rightarrow \log x, y \rightarrow \log y \\ \text { On calcular: Pwreeg } \left.L_{1}, L_{2}\right) \text { or } \operatorname{\text {LinReg}(\operatorname {log}L_{1}\operatorname {log}L_{2})} \end{gathered}$	Type 2 Error Steps: Step 1: Find CV (using invnorm) <: area $=\alpha$ (left), $u=0,0, \sigma=1$ $>$: area $=\alpha$ (right), $u=0,0, \sigma=1$ $\begin{aligned} \neq: \text { area } & =\frac{\alpha}{2} \text { (left), } u=0, \sigma=1 \\ & =\frac{\alpha}{2} \text { (right), } u=0, \sigma=1\end{aligned}$	
Exponential			Type 1: H_{0} true, but we say it is false i.e. reject it Type 2: H_{0} false, but we say true i.e accept it Calculations:
Interpretations			
Probability			Note: There is an alternative method which is harder. Only use this method if you're forced to.
babaility of event A		Step 2: Find error (normcdf) <: Lower=-100, upper=CV $u=$ new $\mu, \sigma=\frac{\sigma}{\sqrt{n}}$ >: Lower=CV, upper=100 $u=$ new $\mu, \sigma=\frac{\sigma}{\sqrt{n}}$ \#: Lower=CV1, upper=CV2 $u=$ new $\mu, \sigma=\frac{\sigma}{\sqrt{n}}$	
Complementary Events	$\frac{P\left(A^{\prime}\right)=1-\mathrm{P}(\mathrm{A}) \text { i.e.probabilities add to } 1}{P(A \cup B)=P(A)+P(B)-P(A \cap B)}$		
Combined Evevts (Addition Rule)Mutualy Exclusive Events			<: $\mathrm{P}\left(\bar{x}<\mu+z_{c} \frac{\tilde{\pi}}{\bar{n}}\right)$ where $\mu=$ original mean, $z_{c}=\mathrm{CV}$ Lower $=-100$, upper $=\mu+z_{c} \frac{\sigma}{\sqrt{n}} u=$ new $\mu, \sigma=\frac{\sigma}{\sqrt{n}}$
	$P(A \cap B)=0$ addition rule becomes: $P(A \cup B)=P(A)+P(B)$		
Pendent Events	$\begin{gathered} \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \\ \text { addition rule becomes: } \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \end{gathered}$		
Conditional "A given B"	$\begin{gathered} \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \mathrm{~A} B)}{P(B)} \\ \text { If independent: } \mathrm{P}(\mathrm{~A} \mid B)=P(A) \end{gathered}$		\#: $\left(\mu-z_{c} \frac{\rho}{\sqrt{1 n}}<\overline{>}>\mu+z_{c} \frac{0}{\bar{m}}\right.$) where $\mu=$ original mean
			Lower $=\mu-z_{c} \frac{\sigma}{\sqrt{n^{\prime}}}$ upper $=\mu+z_{c} \frac{\sigma}{\sqrt{n}}, u=$ new $\mu, \sigma=\frac{\sigma}{\sqrt{n}}$ To Increase/Decrease The EIrrors: Increase Type 1: increase sig level. Changing sample size does nothing Increase Type 2: dec sig level i.e. dec type 1 error, take smaller
${ }^{\text {Bayes Theorem }}$	$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{\prime}\right) P\left(A^{\prime}\right)}$		
Metely Randomise Design (CRD): Each subject receives only one treatmen			
			Data
Randomized (complete) Block Design: Block first and then CRD on each block Matched Pairs Design: Each subject gets both treatments (in any order, order must be random)		Mean	
		Variance Note:can also use formula $\frac{s_{x x}}{n}$	
		Standard Dev	$\sigma=\sqrt{\text { Variance }}$
		$5_{x x}$	$s_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\underline{\left(\Sigma x_{0}\right)^{2}}$
		Unbiased Estimator (\bar{x},	
		Quartiles	
		Shape	Left skew: Mean<Median<Mode or $Q_{3}-Q_{2}<Q_{2}-Q_{1}$ Right Skew: Mode<Mean<Median or $Q_{3}-Q_{2}>Q_{2}-Q_{1}$ Symmetrical: Mode=Median=Mean or $Q_{3}-Q_{2}=Q_{2}-Q_{1}$
Matched Pairs Design: Each subject gets both treatments (in any order, order must be random)		Centre	
		Spread	
			IUes $>$ UQ $+1.5(\mathrm{ClRR})$ or $<$ LQ $-1.5(\mathrm{CQR})$

